“The Missing Manual series is simply the most intelligent and usable series of guidebooks...”
—KEVIN KELLY, CO-FOUNDER OF WIRED

HTMLS

the missing manual’

The book that should have been in the box®

O REILLY" Matthew MacDonald

HTMLS5 / WEB DEVELOPMENT

HTML5 is more than a markup language—it’s a collection

of several independent web standards. Fortunately, this
expanded guide covers everything you need in one convenient
place. With step-by-step tutorials and real-world examples,
HTML5: The Missing Manual shows you how to build web
apps that include video tools, dynamic graphics, geolocation,
offline features, and responsive layouts for mobile devices.

the missing manual’

The book that should have been in the box®

Matthew
MacDonald is
 a science and

technology writer

Add audio and video without plugins. Build playback Sl ARSI il E) CIomE

pages that work in every browser. books to his name. He's

known for books about
Create stunning visuals with Canvas. Draw shapes,

pictures, and text; play animations; and run interactive
games. Creating a Website: The

building websites, including

Jazz up your pages with CSS3. Add fancy fonts and FASEE] el Ele

eye-catching effects with transitions and animation. WordPress: The Missing

Design better web forms. Collect information from Mgz, &5 WEl &S St

visitors more efficiently with HTML5 form elements. handbooks like Your Brain:

- . . . The Missing Manual and Your
Build it once, run it everywhere. Use responsive design e . .

to make your site look good on desktops, tablets, and
smartphones.

Bodly: The Missing Manual.

Include rich desktop features. Build self-sufficient web
apps that work offline and store the data users need.

Us $39.99 CAN $41.99

ISBN: 978-1-449-36326-0 O,REILLY®

53999 missingmanuals.com
|" ||| || |||| ||| twitter: @missingmanuals

9 7814491363260 facebook.com/MissingManuals

Want to read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code: OPC10

All orders over $29.95 qualify for free shipping within the US.

It's also available at your favorite book retailer,
including the iBookstore, the Android Marketplace,

and Amazon.com.

O’REILLY

Spreading the knowledge of innovators oreilly.com

http://www.android.com/market/
http://amazon.com
http://www.oreilly.com
http://shop.oreilly.com/product/0636920029243.do

HTMLS: The Missing Manual, 2nd Edition
by Matthew MacDonald

Copyright © 2014 Matthew MacDonald. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc.,
1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http:/my.safaribooksonline.com).
For more information, contact our corporate/institutional sales department:

(800) 998-9938 or corporate@oreilly.com.

August 2011 First Edition.
December 2013: Second Edition

Revision History for the Second Edition:
2013-12-09 First release
See http://oreil.ly/htmI5tmm_2e for release details.

The Missing Manual is a registered trademark of O’Reilly Media, Inc. The Missing
Manual logo, and “The book that should have been in the box” are trademarks of
O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O’Reilly Media is aware of a trademark claim, the
designations are capitalized.

While every precaution has been taken in the preparation of this book, the publisher

and author assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained in it.

ISBN-13: 978-1-4493-6326-0

[LSI]

Part One:

Contents

TheMissingCredits vii

Introduction Xi

Modern Markup

CHAPTER T

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

Introducing HTMLS 3
The Story of HTMLSo e 3
Three Key Principles of HTMLS o e 7
Your First Look at HTMLS Markup.o 10
A Closer Look at HTML5 Syntax ... 16
HTMLS5's Element Family. ... e 21
USING HTMLS Todayot e e 26
Structuring Pages with SemanticElements 37
Introducing the Semantic Elements 38
Retrofitting a Traditional HTML Page............. 39
Browser Compatibility for the Semantic Elements 51
Designing a Site with the Semantic Elements........... 53
The HTML5 Outlining System. o e 65
Writing More MeaningfulMarkup 75
The Semantic Elements Revisited i i 76
Other Standards That Boost Semantics............. ... 82
A Practical Example: Retrofitting an “About Me” Page 88
How Search EnginesUse Metadata 93
Building Better WebForms 103
Understanding FOrms oo 104
Revamping a Traditional HTML Form........., 105
Validation: Stopping Errors.o 12
Browser Support for Web Forms and Validation...................... 19
New Types of INput o 123
New Elements 130
AnHTML EditorinaWeb Page ..., 136

Part Two: Video, Graphics, and Glitz
CHAPTER5: AudioandVideo... 143
The Evolutionof Web Video. 144
Introducing HTML5 Audioand Videoo ... 145
Understanding the HTML5 MediaFormats........................... 149
Fallbacks: How to Please Every Browser............oiiiveiin... 154
Controlling Your Player with JavaScript............ 160
Video Captions ..ot 169
CHAPTER 6: Fancy Fonts and Effects withCSS3....................... 177
UsSINg CSS3 T0day. . oottt ettt 178
Building Better BoXest 184
Creating Effects with Transitions. 195
Web FONES ..o 206
CHAPTER 7: Responsive Web DesignwithCSS3 221
Responsive Design: The BasiCS oot 222
Adapting Your Layout with Media Queriesccoviin.. 231
CHAPTER 8: Basic Drawing withtheCanvas........................... 245
Getting Started withthe Canvas........... 246
Building a Basic Paint Program 263
Browser Compatibility fortheCanvas.............., 271
CHAPTER 9: Advanced Canvas: Interactivity and Animation........ .. 275
Other Things You Can DrawontheCanvas., 275
Shadowsand Fancy Fills. o 281
Making Your Shapes Interactive i 293
Animating the Canvas 300
A Practical Example: TheMaze Game 307

Part Three: Building Web Apps

CHAPTER10: StoringYourData.. 319
Web Storage BasiCS. ...t 320
Deeperinto Web Storage. ... 326
Reading Files. 332
IndexedDB: A Database EngineinaBrowser.................coo.o... 340
CHAPTER1: Running Offline............... 355
Caching Files with a Manifest. 356
Practical Caching Techniques ... 366

v CONTENTS

CHAPTER 12:

CHAPTER 13:

Communicating with the Web Server.................... 375

Sending Messages tothe Web Server 376
Server-Sent Events. 386
Web SOCKeLS . .. 393

GeoloCatioN . .o 402
WeEbh WOrKerS. . oo 414
History Management i 425

Part Four: Appendixes

APPENDIX A: Essential CSS 435
Adding StylestoaWeb Page.c i 435
The Anatomy of a StyleSheet 436
Slightly More Advanced StyleSheets. 440
A Style Sheet ToUr ... ot 445

APPENDIX B: JavaScript: The Brains of YourPage 451
How a Web Page Uses JavaScript. 452
A Few Language Essentials i 459
Interacting withthe Page i 470
Index. 477

CONTENTS

Introducing HTML5

f HTML were a movie, HTML5 would be its surprise twist. HTML wasn’t meant to

survive into the 21st century. The official web standards organization, the W3C

(short for World Wide Web Consortium), left HTML for dead way back in 1998.
The W3C pinned its future plans on a specification called XHTML, which it intended
to be HTMLUs cleaned-up, modernized successor. But XHTML stumbled, and a group
of disenfranchised rebels resuscitated HTML, laying the groundwork for the features
that you’ll explore in this book.

In this chapter, you’ll get the scoop on why HTML died and how it came back to life.
You'll learn about HTML5’s philosophy and features, and you’ll consider the thorny
issue of browser support. You'll also get your first look at an authentic HTML5
document.

M The Story of HTMLS5

The basic idea behind HTML—that you use elements to structure your content—hasn’t
changed since the Web’s earliest days. In fact, even the oldest web pages still work
perfectly in the most modern web browsers.

Being old and successful also carries some risks—namely, that everyone wants to
replace you. In 1998, the W3C stopped working on HTML and attempted to improve
it with an XML-powered successor called XHTML 1.0.

CHAPTER

1

THE STORY OF
HTMLS

XHTML 1.0: Getting Strict

XHTML has most of the same syntax conventions as HTML, but it enforces stricter
rules. Much of the sloppy markup that traditional HTML permitted just isn’t accept-
able in XHTML.

For example, suppose you want to italicize the last word in a heading, like so:
<h1>The Life of a <i>Duck</i></h1>

And you accidentally swap the final two tags:
<h1>The Life of a <i>Duck</h1></i>

When a browser encounters this slightly messed-up markup, it can figure out what
you really want. It italicizes the last word without even a polite complaint. However,
the mismatched tags break XHTMLU’s official rules. If you plug your page into an
XHTML validator (or use a web design tool like Dreamweaver), you’ll get a warning
that points out your mistake. From a web design point of view, XHTML’s strictness
is helpful in that it lets you catch minor mistakes that might cause inconsistent
results on different browsers (or might cause bigger problems when you edit and
enhance the page).

At first, XHTML was a success story. Professional web developers, frustrated with
browser quirks and the anything-goes state of web design, flocked to XHTML.
Along the way, they were forced to adopt better habits and give up a few of HTML’s
half-baked formatting features. However, many of XHTML's imagined benefits—like
interoperability with XML tools, easier page processing for automated programs,
portability to mobile platforms, and extensibility of the XHTML language itself—never
came to pass.

Still, XHTML became the standard for most serious web designers. And while every-
one seemed pretty happy, there was one dirty secret: Although browsers understood
XHTML markup, they didn’t enforce the strict error-checking that the standard
required. That means a page could break the rules of XHTML, and the browsers
wouldn’t blink twice. In fact, there was nothing to stop a web developer from throw-
ing together a mess of sloppy markup and old-fashioned HTML content and calling
itan XHTML page. There wasn’t a single browser on the planet that would complain.
And that made the people in charge of the XHTML standard deeply uncomfortable.

XHTML 2: The Unexpected Failure

XHTML 2 was supposed to provide a solution to this sloppiness. It was set to tighten
up the error-handling rules, forcing browsers to reject invalid XHTML 2 pages.
XHTML 2 also threw out many of the quirks and conventions that originated with
HTML. For example, the system of numbered headings (<h1>, <h2>, <h3>, and so
on) was superseded by a new <h> element, whose significance depended on its
position in a web page. Similarly, the <a> element was eclipsed by a feature that let
web developers transform any element into a link, and the element lost its
alt attribute in favor of a new way to supply alternate content.

HTMLS5: THE MISSING MANUAL, SECOND EDITION

These changes were typical of XHTML 2. In theory, they made for cleaner, more
logical markup. In practice, the changes forced web designers to alter the way they
wrote web pages (to say nothing of updating the web pages they already had), and
added no new features to make all that work worthwhile. XHTML 2 even dumped a
few well-worn elements that some web designers still loved, like for bold text,
<i> for italics, and <iframe> for embedding one web page inside another.

But perhaps the worst problem was the glacial pace of change. Development on
XHTML 2 dragged on for five years, and developer enthusiasm slowly leaked away.

HTML5: Back from the Dead

At about the same time—starting in 2004—a group of people started looking at
the future of the Web from a different angle. Instead of trying to sort out what was
wrong (or just “philosophically impure”) in HTML, they focused on what was missing,
in terms of the things web developers wanted to get done.

After all, HTML began its life as a tool for displaying documents. With the addition
of JavaScript, it had morphed into a system for developing web applications, like
search engines, ecommerce stores, mapping tools, email clients, and a whole lot
more. And while a crafty web application can do a lot of impressive things, it isn’t
easy to create one. Most web apps rely on a soup of handwritten JavaScript, one or
more popular JavaScript toolkits, and a code module that runs on the web server.
It’s a challenge to get all these pieces to interact consistently on different browsers.
Even when you get it to work, you need to mind the duct tape and staples that hold
everything together.

The people creating browsers were particularly concerned about this situation. So
a group of forward-thinking individuals from Opera Software (the creators of the
Opera browser) and the Mozilla Foundation (the creators of Firefox) lobbied to get
XHTML to introduce more developer-oriented features. When they failed, Opera,
Mozilla, and Apple formed the loosely knit WHATWG (Web Hypertext Application
Technology Working Group) to think of new solutions.

The WHATWG wasn’t out to replace HTML, but to extend it in a seamless, backward-
compatible way. The earliest version of its work had two add-on specifications called
Web Applications 1.0 and Web Forms 2.0. Eventually, these standards evolved into
HTMLS5.

NOTE The number 5in the HTML5 specification name is supposed to indicate that the standard picks up
where HTML left off (that’s HTML version 4.01, which predates XHTML). Of course, this isn’t really accurate, because
HTML5 supports everything that’s happened to web pages in the decade since HTML 4.01 was released, including
strict XHTML-style syntax (if you choose to use it) and a slew of JavaScript innovations. However, the name still
makes a clear point: HTML5 may support the conventions of XHTML, but it enforces the rules of HTML.

By 2007, the WHATWG camp had captured the attention of web developers every-
where. After some painful reflection, the W3C decided to disband the group that
was working on XHTML 2 and work on formalizing the HTML5 standard instead. At

THE STORY OF
HTMLS

CHAPTER 1: INTRODUCING HTML5

THE STORY OF
HTMLS5

this point, the original HTML5 was broken into more manageable pieces, and many
of the features that had originally been called HTML5 became separate standards

(for more, see the box on this page).

TIP

You can read the official W3C version of the HTMLS standard at www.w3.0rg/TR/htm5.

UP TO SPEED

What Does HTML5 Include?

HTML5 is really a web of interrelated standards. This approach is
both good and bad. It’s good because the browsers can quickly
implement mature features while others continue to evolve.
It’s bad because it forces web page writers to worry about
checking whether a browser supports each feature they want
to use. You'll learn some painful and not-so-painful techniques
for doing so in this book.

Here are the major feature categories that fall under the
umbrella of HTML5:

* Core HTMLS. This part of HTML5 makes up the official W3C
version of the specification. It includes the new semantic
elements (Chapter 2 and Chapter 3), new and enhanced
web form widgets (Chapter 4), audio and video support
(Chapter 5), and the canvas for drawing with JavaScript
(Chapter 8 and Chapter 9).

+ Features that were once HTMLS. These features sprang
from the original HTML5 specification as prepared by the

WHATWG. Most of these are specifications for features that
require JavaScriptand support rich web applications. The
most significant include local data storage (Chapter 10),
offline applications (Chapter 11), and messaging (Chapter 12),
but you’ll learn about several more in this book.

+ Features that are sometimes called HTML5. These are
next-generation features that are often lumped together
with HTML5, even though they weren’t ever a part of the
HTML5 standard. This category includes (SS3 (Chapter 6
and Chapter 7) and geolocation (Chapter 13).

Even the W3C s blurring the boundaries between the “real”
HTML5 (what’s actually in the standard) and the “marketing”
version (which includes everything that’s part of HTML5 and
many complementary specifications). For example, the official
W3C logo website (www.w3.0rg/html/logo) encourages you
to generate HTML5 logos that promote (SS3 and SVG—two
standards that were under development well before HTML5
appeared.

HTML: The Living Language

The switch from the W3C to the WHATWG and back to the W3C again has led to a
rather unusual arrangement. Technically, the W3C is in charge of determining what
is and isn’t official HTML5. But at the same time, the WHATWG continues its work
dreaming up future HTML features. Only now, they no longer refer to their work
as HTML5. They simply call it HTML, explaining that HTML will continue as a living
language.

Because HTML is a living language, an HTML page will never become obsolete and
stop working. HTML pages will never use a version number (even in the doctype),
and web developers will never need to “upgrade” their markup from one version to
another to get it to work on new browsers. By the same token, new features may
be added to HTML at any time.

6 HTMLS5: THE MISSING MANUAL, SECOND EDITION

When web developers hear about this plan, their first reaction is usually unmitigated
horror. After all, who wants to deal with a world of wildly variable standards sup-
port, where developers need to pick and choose the features they use based on the
likelihood that these features will be supported? However, on reflection, most web
developers come to a grudging realization: For better or for worse, this is exactly
the way browsers have worked since the dawn of the Web.

As explained earlier, today’s browsers are happy with any mishmash of supported
features. You can take a state-of-the-art XHTML page and add something as scandal-
ously backward as the <marquee> element (an obsolete feature for creating scrolling
text), and no browser will complain. Similarly, browsers have well-known holes in
their support for even the oldest standards. For example, browser makers started
implementing CSS3 before CSS2 support was finished, and many CSS2 features were
later dropped. The only difference is that now HTML5 makes the “living language”
status official. Still, it’s no small irony that just as HTML is embarking on a new, in-
novative chapter, it has finally returned full circle to its roots.

TIP To see the current, evolving draft of HTML that includes the stuff called HTML5 and a small but ever-
evolving set of new, unsupported features, go to hitp://whatwg.org/html.

M Three Key Principles of HTML5

By this point, you’re probably eager to get going with a real HTML5 page. But first,
it’s worth climbing into the minds of the people who built HTML5. Once you under-
stand the philosophy behind the language, the quirks, complexities, and occasional
headaches that you’ll encounter in this book will make a whole lot more sense.

1. Don’t Break the Web

“Don’t break the Web” means that a standard shouldn’t introduce changes that
make other people’s web pages stop working. Fortunately, this kind of wreckage
rarely happens.

“Don’t break the Web” also means that a standard shouldn’t casually change the
rules, and in the process make perfectly good current-day web pages to be obsolete
(even if they still happen to work). For example, XHTML 2 broke the Web because
it demanded an immediate, dramatic shift in the way web pages were written. Yes,
old pages would still work—thanks to the backward compatibility that’s built into
browsers. But if you wanted to prepare for the future and keep your website up
to date, you'd be forced to waste countless hours correcting the “mistakes” that
XHTML 2 had banned.

HTMLS5 has a different viewpoint. Everything that was valid before HTML5 remains
valid in HTMLS5. In fact, everything that was valid in HTML 4.01 also remains valid
in HTMLS5.

THREE KEY
PRINCIPLES OF
HTMLS

CHAPTER 1: INTRODUCING HTML5

THREE KEY
PRINCIPLES OF
HTMLS5

NOTE Unlike previous standards, HTML5 doesn’t just tell browser makers what to support—it also documents
and formalizes the way they already work. Because the HTML5 standard documents reality, rather than just setting

out a bunch of ideal rules, it may become the best-supported web standard ever.

UP TO SPEED

Because HTML5 supports all of HTML, it supports many fea-
tures that are considered obsolete. These include formatting
elements like , despised special-effect elements
like <blink> and <marquee>, and the awkward system
of HTML frames.

This open-mindedness is a point of confusion for many HTML5
apprentices. On the one hand, HTML5 should by all rights ban
these outdated elements, which haven’t appeared in an official
specification for years (if ever). On the other hand, modern
browsers still quietly support these elements, and HTML5 is
supposed to reflect how web browsers really work. So what’s
a standard to do?

To solve this problem, the HTML5 specification has two sepa-
rate parts. The first part—which is what you’ll consider in this
book—targets web developers. Developers need to avoid the
bad habits and discarded elements of the past. You can make
sure you’re following this part of the HTML5 standard by using
an HTMLS validator.

The second, much longer part of the HTML5 specification targets
browser makers. Browsers need to support everything that’s

How HTML5 Handles Obsolete Elements

ever existed in HTML, for backward compatibility. Ideally, the
HTML5 standard should have enough information that someone
could build a browser from scratch and make it completely
compatible with the modern browsers of today, whether it
was processing new or old markup. This part of the standard
tells browsers how to deal with obsolete elements that are
officially discouraged but still supported.

Incidentally, the HTML5 specification also formalizes how
browsers should deal with a variety of errors (for example,
missing or mismatched tags). This point is important, because
it ensures that a flawed page will work the same on different
browsers, even when it comes to subtle issues like the way
a page is modeled in the DOM (that’s the Document Object
Model, the tree of in-memory objects that represents the
page and is made available to JavaScript code). To create
this long, tedious part of the standard, the creators of HTML5
performed exhaustive tests on modern browsers to figure
out their undocumented error-handling behavior. Then, they
wrote it down.

2. Pave the Cowpaths

A cowpath is the rough, heavily trodden track that gets people from one point to
another. A cowpath exists because it’s being used. It might not be the best possible
way to move around, but at some point it was the most practical working solution.

HTML5 standardizes these unofficial (but widely used) techniques. It may not be as
neat as laying down a nicely paved expressway with a brand-new approach, but it
has a better chance of succeeding. That’s because switching over to new techniques
may be beyond the ability or interest of the average website designer. And worse,
new technigues may not work for visitors who are using older browsers. XHTML 2
tried to drive people off the cowpaths, and it failed miserably.

8 HTMLS5: THE MISSING MANUAL, SECOND EDITION

Paving the cowpaths has an obvious benefit: It uses established techniques that already have some
level of browser support. If you give web developers a choice between a beautifully designed new feature that
works on 70 percent of the web browsers out there and a messy hack that works everywhere, they’ll choose the
messy hack and the bigger audience every time.

The “pave the cowpaths” approach also requires some compromises. Sometimes it
means embracing a widely supported but poorly designed feature. One example is
HTML5’s drag-and-drop ability (page 337), which is based entirely on the behavior
Microsoft created for IE 5. Although this drag-and-drop feature is now supported in
all browsers, it’s universally loathed for being clumsy and overly complicated. This
magnanimousness has led some web designers to complain that “HTML5 not only
encourages bad behavior, it defines it.”

3. Be Practical

This principle is simple: Changes should have a practical purpose. And the more
demanding the change, the bigger the payoff needs to be. Web developers may
prefer nicely designed, consistent, quirk-free standards, but that isn’t a good enough
reason to change a language that’s already been used to create several billion pages.
Of course, it’s still up to someone to decide whose concerns are the most important.
A good clue is to look at what web pages are already doing—or trying to do.

For example, the world’s third most popular website (at the time of this writing)
is YouTube. But because HTML had no real video features before HTML5, YouTube
has had to rely on the Flash browser plug-in. This solution works surprisingly well
because the Flash plug-in is present on virtually all web-connected computers.
However, there are occasional exceptions, like locked-down corporate computers
that don’t allow Flash, or mobile devices that don’t support it (like the iPhone, iPad,
and Kindle). And no matter how many computers have Flash, there’s a good case for
extending the HTML standard so it directly supports one of the most fundamental
ways people use web pages today—to watch video.

There’s a similar motivation behind HTML5’s drive to add more interactive features—
drag-and-drop support, editable HTML content, two-dimensional drawing on a
canvas, and so on. You don’t need to look far to find web pages that use all of these
features right now, some with plug-ins like Adobe Flash and Microsoft Silverlight, and
others with JavaScript libraries or (more laboriously) with pages of custom-written
JavaScript code. So why not add official support to the HTML standard and make sure
these features work consistently on all browsers? That’s what HTML5 sets out to do.

NOTE Browser plug-ins like Flash won’t go away overnight. Despite its many innovations, it still takes
far more work to build complex, graphical applications in HTML5. But HTML5’s ultimate vision is clear: to allow
websites to offer video, rich interactivity, and piles of frills without requiring a plug-in.

THREE KEY
PRINCIPLES OF
HTMLS

CHAPTER 1: INTRODUCING HTML5

YOUR FIRST
LOOK AT
HTML5 MARKUP

M Your First Look at HTMLS5 Markup

Here’s one of the simplest HTML5 documents you can create:

<IDOCTYPE html>
<title>A Tiny HTML Document</title>
<p>Let's rock the browser, HTML5 style.</p>

It starts with the HTML5 doctype (a special code that’s explained on page 1), fol-
lowed by a title, and then followed by some content. In this case, the content is a
single paragraph of text.

You already know what this looks like in a browser, but if you need reassuring, check
out Figure 1-1.

(EEESA l=[E 5| FigURE 11
J [] A Tiny HTML Document | + T This super-simple HTML5 document holds a single line of
€)9 | /Chapter01/supersimpleHTMLs html - € ||t || I3 text.

Let's rock the browser, HTMLS style.

You can pare down this document a bit more. For example, the HTML5 standard
doesn’t really require the final </p> tag, since browsers know to close all open ele-
ments at the end of the document (and the HTML5 standard makes this behavior
official). However, shortcuts like these create confusing markup and can lead to
unexpected mistakes.

The HTML5 standard also lets you omit the <title> element if the title information
is provided in another way. For example, if you’re sending an HTML document in an
email message, you could put the title in the title of the email message and put the
rest of the markup—the doctype and the content—into the body of the message.
But this is obviously a specialized scenario.

More commonly, you’ll want to flesh out this bare-bones HTML5 document. Most web
developers agree that using the traditional <head> and <body> sections can prevent
confusion, by cleanly separating the information about your page (the head) and its
actual content (the body). This structure is particularly useful when you start adding
scripts, style sheets, and meta elements.

10 HTMLS5: THE MISSING MANUAL, SECOND EDITION

<IDOCTYPE html>
<head>
<title>A Tiny HTML Document</title>
</head>
<body>
<p>Let's rock the browser, HTML5 style.</p>
</body>

As always, the indenting (at the beginning of lines three and six) is purely optional.
This example uses it to make the structure of the page easier to see at first glance.

Finally, you can choose to wrap the entire document (not including the doctype) in
the traditional <html> element. Here’s what that looks like:

<IDOCTYPE html>
<html>
<head>
<title>A Tiny HTML Document</title>
</head>
<body>
<p>Let's rock the browser, HTML5 style.</p>
</body>
</html>

Up until HTMLS5, every version of the official HTML specification had demanded
that you use the <html> element, despite the fact that it has no effect on browsers.
However, HTML5 makes this detail completely optional.

The use of the <htm1>, <head>, and <body> elements is simply a matter of style. You can leave
them out and your page will work perfectly well, even on old browsers that don’t know a thing about HTMLS. In
fact, the browser will automatically assume these details. So if you use JavaScript to peek at the DOM (the set of
programming objects that represents your page), you'll find objects for the <html>, <head>, and <body>
elements, even if you didn’t add them yourself.

Currently, this example is somewhere between the simplest possible HTML5 docu-
ment and the fleshed-out starting point of a practical HTML5 web page. In the fol-
lowing sections, you'll fill in the rest of what you need and dig a little deeper into
the markup.

The HTMLS Doctype

The first line of every HTML5 document is a special code called the doctype. The
doctype clearly indicates the standard that was used to write the document markup
that follows. Here’s how a page announces that it adheres to the HTML5 standard:

<IDOCTYPE html>

YOUR FIRST
LOOK AT
HTML5 MARKUP

CHAPTER 1: INTRODUCING HTML5

1

YOUR FIRST
LOOK AT
HTML5 MARKUP

The first thing you’ll notice about the HTML5 doctype is its striking simplicity.
Compare it, for example, to the ungainly doctype that web developers need when
using XHTML 1.0 strict:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Even professional web developers were forced to copy and paste the XHTML doctype
from one document to another. But the HTML5 doctype is short and snappy, so you
won’t have much trouble typing it by hand.

The HTML5 doctype is also notable for the fact that it doesn’t include the official
specification version (that’s the 5in HTMLS5). Instead, the doctype simply indicates
that the page is HTML, which is in keeping with the new vision of HTML5 as a living
language (page 6). When new features are added to the HTML language, they’re
automatically available in your page, without requiring you to edit the doctype.

All of this raises a good question—if HTML5 is a living language, why does your web
page require any doctype at all?

The answer is that the doctype remains for historical reasons. Without a doctype,
most browsers (including Internet Explorer and Firefox) will lapse into quirks mode.
In this mode, they’ll attempt to render pages according to the slightly buggy rules
that they used in older versions. The problem is that one browser’s quirks mode dif-
fers from the next, so pages designed for one browser are likely to get inconsistently
sized fonts, scrambled layouts, and other glitches on another browser.

When you add a doctype, the browser recognizes that you want to use the stricter
standards mode, which ensures that the web page is displayed with consistent
formatting and layout on every modern browser. The browser doesn’t even care
which doctype you use (with just a few exceptions). Instead, it simply checks that
you have some doctype. The HTMLS5 doctype is simply the shortest valid doctype,
so it always triggers standards mode.

TIP The HTML5 doctype triggers standards mode on all browsers that have a standards mode, including
browsers that don’t know anything about HTML5. For that reason, you can use the HTML5 doctype now, in all your
pages, even if you need to hold off on some of HTML5’s less-supported features.

Although the doctype is primarily intended to tell web browsers what to do, other
agents canalso check it. Thisincludes HTML5 validators, search engines, design tools,
and other human beings when they’re trying to figure out what flavor of markup
you’ve chosen for your page.

Character Encoding

The character encoding is the standard that tells a computer how to convert your
text into a sequence of bytes when it’s stored in a file—and how to convert it back
again when the file is opened. For historical reasons, there are many different char-
acter encodings in the world. Today, virtually all English websites use an encoding

12

HTMLS5: THE MISSING MANUAL, SECOND EDITION

called UTF-8, which is compact, fast, and supports all the non-English characters
you’ll ever need.

Often, the web server that hosts your pages is configured to tell browsers that it’s
serving out pages with a certain kind of encoding. However, because you can’t be
sure that your web server will take this step (unless you own the server), and be-
cause browsers can run into an obscure security issue when they attempt to guess
a page’s encoding, you should always add encoding information to your markup.

HTML5 makes that easy to do. All you need to do is add the <meta> element shown
below at the very beginning of your <head> section (or right after the doctype, if
you don’t define the <head> element):

<head>

<meta charset="utf-8">

<title>A Tiny HTML Document</title>
</head>

Design tools like Dreamweaver add this detail automatically when you create a new
page. They also make sure that your files are being saved with UTF encoding. How-
ever, if you’re using an ordinary text editor, you may need to take an extra step to
make sure your files are being saved correctly. For example, when editing an HTML
file in Notepad (on Windows), in the Save As dialog box, you must choose UTF-8
from the Encoding list (at bottom). In TextEdit (on Mac), in the Save As dialog box,
you need to first choose Format—Make Plain Text to make sure the program saves
your page as an ordinary text file, and then choose “Unicode (UTF-8)” from the
Plain Text Encoding pop-up menu.

The Language

It’s considered good style to indicate your web page’s natural language. This informa-
tion is occasionally useful to other people—for example, search engines can use it to
filter search results so they include only pages that match the searcher’s language.

To specify the language of some content, you use the lang attribute on any element,
along with the appropriate language code. That’s en for plain English, but you can
find more exotic language codes at http://tinyurl.com/I-codes.

The easiest way to add language information to your web page is to use the <html>
element with the lang attribute:

<html lang="en">

This detail can also help screen readers if a page has text from multiple languages. In
this situation, you use the lang attribute to indicate the language of different sections
of your document; for example, by applying it to different <div> elements that wrap
different content. Screen readers can then determine which sections to read aloud.

YOUR FIRST
LOOK AT
HTML5 MARKUP

CHAPTER 1: INTRODUCING HTML5

13

YOUR FIRST
LOOK AT
HTML5 MARKUP

Adding a Style Sheet

Virtually every web page in a properly designed, professional website uses CSS style
sheets. You specify the style sheets you want to use by adding <1ink> elements to
the <head> section of an HTML5 document, like this:

<head>

<meta charset="utf-8">

<title>A Tiny HTML Document</title>

<link href="styles.css" rel="stylesheet">
</head>

This method is more or less the same way you attach style sheets to a traditional
HTML document, but slightly simpler.

WASE Because CSS is the only style sheet language around, there’s no need to add the type="text/
css" attribute that web pages used to require.

Adding JavaScript

JavaScript started its life as a way to add frivolous glitter and glamour to web pages.
Today, JavaScript is less about user interface frills and more about novel web ap-
plications, including super-advanced email clients, word processors, and mapping
engines that run right in the browser.

You add JavaScript to an HTMLS5 page in much the same way that you add it to
a traditional HTML page. Here’s an example that references an external file with
JavaScript code:

<head>
<meta charset="utf-8">
<title>A Tiny HTML Document</title>
<script src="scripts.js"></script>
</head>

There’s no need to include the language="JavaScript" attribute. The browser as-
sumes you want JavaScript unless you specify otherwise—and because JavaScript
is the only HTML scripting language with broad support, you never will. However,
you do still need to remember the closing </script> tag, even when referring to an
external JavaScript file. If you leave it out or attempt to shorten your markup using
the empty element syntax, your page won’t work.

If you spend a lot of time testing your JavaScript-powered pages in Internet Explorer,
you may also want to add a special comment called the mark of the Web to your
<head> section, right after the character encoding. It looks like this:

14

HTMLS5: THE MISSING MANUAL, SECOND EDITION

<head>
<meta charset="utf-8">
<!-- saved from url=(0014)about:internet -->
<title>A Tiny HTML Document</title>
<script src="scripts.js"></script>
</head>

This comment tells Internet Explorer to treat the page as though it has been down-
loaded from a remote website. Otherwise, |IE switches into a special locked-down
mode, pops up a security warning in a message bar, and won’t run any JavaScript
code until you explicitly click “Allow blocked content.”

All other browsers ignore the “mark of the Web” comment and use the same security
settings for remote websites and local files.

The Final Product

If you’ve followed these steps, you’ll have an HTML5 document that looks something
like this:

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>A Tiny HTML Document</title>
<link href="styles.css" rel="stylesheet">
<script src="scripts.js"></script>
</head>

<body>

<p>Let's rock the browser, HTML5 style.</p>
</body>
</html>

Although it’s no longer the shortest possible HTML5 document, it’s a reasonable
starting point for any web page you want to build. And while this example seems
wildly dull, don’t worry—in the next chapter, you’ll step up to a real-life page that’s
full of carefully laid-out content, and all wrapped up in CSS.

NOTE All the HTMLS syntax you’ve learned about in this section—the new doctype, the meta element for

character encoding, the language information, and the style sheet and JavaScript references, work in browsers
both new and old. That’s because they rely on defaults and built-in error-correcting practices that all browsers
use.

YOUR FIRST
LOOK AT
HTML5 MARKUP

CHAPTER 1: INTRODUCING HTMLS5

15

A CLOSER
LOOK AT
HTML5 SYNTAX

M A Closer Look at HTMLS5 Syntax

As you’ve already learned, HTML5 loosens some of the rules. That’s because the
creators of HTML5 wanted the language to more closely reflect web browser real-
ity—in other words, they wanted to narrow the gap between “web pages that work”
and “web pages that are considered valid, according to the standard.” In the next
section, you’ll take a closer look at how the rules have changed.

There are still plenty of obsolete practices that browsers support but that the HTML5 standard strictly
discourages. For help catching these in your own web pages, you’ll need an HTML5 validator (page 17).

The Loosened Rules

In your first walk through an HTML5 document, you discovered that HTML5 makes
the <html>, <head>, and <body> elements optional (although they can still be pretty
useful). But HTML5’s relaxed attitude doesn’t stop there.

HTMLS5 ignores capitalization, letting you write markup like the following:
<P>Capital and lowercase letters don't matter in tag names.</p>.

HTMLS5 also lets you omit the closing slash from a vo/d e/emeni—that’s an element
with no nested content, like an (image), a
 (line break), or an <hr> (hori-
zontal line). Here are three equivalent ways to add a line break:

I cannot

move backward

or forward.

I am caught

HTMLS5 also changes the rules for attributes. Attribute values don’t need quotation
marks anymore, as long as the value doesn’t include a restricted character (typi-
cally >, =, or a space). Here’s an example of an element that takes advantage
of this ability:

Attributes with no values are also allowed. So while XHTML required the somewhat
redundant syntax to put a checkbox in the checked state...

<input type="checkbox" checked="checked" />

...you can now revive the shorter HTML 4.01tradition of including the attribute name
on its own.

<input type="checkbox" checked>

What’s particularly disturbing to some peopleisn’t the fact that HTML5 allows these
things. It’s the fact that inconsistent developers can casually switch back and forth
between the stricter and the looser styles, even using both in the same document.
In reality, though, XHTML permitted the same kind of inconsistency. In both cases,

16

HTMLS5: THE MISSING MANUAL, SECOND EDITION

good style is the responsibility of the web designer, and the browser tolerates
whatever you can throw at it.

Here’s a quick summary of what constitutes good HTML5 style—and what conven-
tions the examples in this book follow, even if they don’t have to:

¢ Including the optional <html>, <body>, and <head> elements. The <html>
element is a handy place to define the page’s natural language (page 13); and
the <body> and <head> elements help to keep page content separate from the
other page details.

+ Using lowercase tags (like <p> instead of <P>). They’re not necessary, but
they’re far more common, easier to type (because you don’t need the Shift
key), and not nearly as shouty.

* Using quotation marks around attribute values. The quotation marks are
there for a reason—to protect you from mistakes that are all too easy to make.
Without quotation marks, one invalid character can break your whole page.

On the other hand, there are some old conventions that this book ignores (and you
can, too). The examples in this book don’t close empty elements, because most
developers don’t bother to add the extra slash (/) when they switch to HTML5.
Similarly, there’s no reason to favor the long attribute form when the attribute name
and the attribute value are the same.

HTMLS Validation

HTML5’s new, relaxed style may suit you fine. Or, the very thought that there could
be inconsistent, error-ridden markup hiding behind a perfectly happy browser may
be enough to keep you up at night. If you fall into the latter camp, you’ll be happy
to know that a validation tool can hunt down markup that doesn’t conform to the
recommended standards of HTMLS5, even if it doesn’t faze a browser.

Here are some potential problems that a validator can catch:
* Missing mandatory elements (for example, the <title> element)
» A start tag without a matching end tag
* Incorrectly nested tags

» Tags with missing attributes (for example, an element without the src
attribute)

* Elements or content in the wrong place (for example, text that’s placed directly
in the <head> section)

Web design tools like Dreamweaver often have their own validators. But if you don’t
want the cost or complexity of a professional web editor, you can get the same
information from an online validation tool. Here’s how to use the popular validator
provided by the W3C standards organization:

A CLOSER
LOOK AT
HTML5 SYNTAX

CHAPTER 1: INTRODUCING HTML5

17

A CLOSER
LOOK AT
HTML5 SYNTAX

1. In your web browser, go to http://validator.w3.org (Figure 1-2).

The W3C validator gives you three choices, represented by three separate tabs:

“Validate by URI” (for a page that’s already online), “Validate by File Upload”
(for a page that’s stored in a file on your computer), and “Validate by Direct
Input” (for a bunch of markup you type in yourself).

2. Click the tab you want, and supply your HTML content.

» Validate by URI lets you validate an existing web page. You just need to

type the page’s URL in the Address box (for example, http://www.MySlop-
pySite.com/FlawedPage.html).

Validate by File Upload lets you upload any file from your computer. First,
click the Browse button (in Chrome, click Choose File). In the Open dialog
box, select your HTML file and then click Open.

Validate by Direct Input lets you validate any markup—you just need to
type it into a large box. The easiest way to use this option is to copy the
markup from your text editor and paste it into the box on the W3C valida-
tion page.

—— =i [FIGURE 1-2

/' [E The W3C Markup Validati... - \i
(The website http://valida-
<« C @ validatorw3.org/#validate_by_input = % N :

Markup Validation Service

Check the markup (HTHL, XHTML,) nents adaress of another web

Validate by URI Validate by File Upload Validate by Direct Jnput s file of your own, or V"f’
3 can type the markup in
Validate by direct input directly (shown here).

Enter the Markup to validate:

tor.w3.0rg gives you three
options for validating
HTML. You can fill in the

page, you can upload a

<!DOCTY¥FE html>
<html lang="en">
<head>
<meta charset="utf-8">

<link href="styles.css"™ rel="stylesheet">
<3cript src="s3cripta.ja"»</3cript>

</head>

<body>

<p>Be careful not to overlap nearby nested elements, or else!</p>

</body>
</html>

» More Options

validatorw3.org/#validate_by_input

I Check

Before continuing, you can click More Options to change some settings, but
you probably won't. It’s best to let the validator automatically detect the docu-
ment type—that way, the validator will use the doctype specified in your web
page. Similarly, use automatic detection for the character set unless you have

18

HTMLS5: THE MISSING MANUAL, SECOND EDITION

A CLOSER
an HTML page that’s written in another language and the validator has trouble LOOK AT

determining the correct character set. HTMLS SYNTAX

3. Click the Check button.

This click sends your HTML page to the W3C validator. After a brief delay, the
report appears. You'll see whether your document passed the validation check
and, if it failed, what errors the validator detected (see Figure 1-3).

NOTE Even in a perfectly valid HTML document, you may get a few harmless warnings, including that the
character encoding was determined automatically and that the HTMLS validation service is considered to be an
experimental, not-fully-finished feature.

. [E=T =) .
/"l Unwalic] Markup Validati... x\?}_‘ FIGU.RE 1-3)
e € | © validatorw org/check = A The validator has' d/sgov-
ered four errors in this
Validation Qutput: 4 Errors document that stem from
two mistakes. First, the
@ Line 7, Column 7- Element head is missing a required instance of child element title. page is missing the man-

datory <title> element.

</head > .
Second, it closes the <p>
Content model for element heaa: .
If the document is an ifreme sredec document or if title information is available from a higher-level element before (‘IOS[ng the
rotocol: Zero or more elements of metadata content. ,
herwise: One or more elements of metadata content, of which exactly one is a title element. (S‘tl’Ohg) element that’s

nested inside. (To solve
this problem, you would
& Line 10, Column 75: End tag p seen, but there were open elements. replace </p>

b=} .
.Be careful not to overlap nearby nested elements, or else!</p >7-</strang> W/th </St1'0ng></P>-)
Incidentally, this document
s still close enough to being

@ Line 10, Column 63 Unclosed element strong. correct that all browsers will
- display it properly.

-Be careful not to overlap nearby nested elements, or else!</p> H

& Line 10, Column 84 No element strong to close.
b=}

.Be careful not to overlap nearby nested elements, <strongror else!{/p)—(/strang__b___

The Return of XHTML

As you’ve already learned, HTMLS5 spells the end for the previous king of the Web—
XHTML. However, reality isn’t quite that simple, and XHTML fans don’t need to give
up all the things they loved about the past generation of markup languages.

First, remember that XHTML syntax lives on. The rules that XHTML enforced either
remain as guidelines (for example, nesting elements correctly) or are still supported
as optional conventions (for example, including the trailing slash on empty elements).

CHAPTER 1: INTRODUCING HTML5 19

A CLOSER
LOOK AT
HTML5 SYNTAX

But what if you want to enforce the XHTML syntax rules? Maybe you’re worried that
you (or the people you work with) will inadvertently slip into the looser conven-
tions of ordinary HTML. To stop that from happening, you need to use XHTML5—a
less common standard that is essentially HTML5 with the XML-based restrictions
slapped on top.

To turn an HTML5 document into an XHTML5 document, you need to explicitly add
the XHTML namespace to the <html> element, close every element, make sure you use
lowercase tags, and so on. Here’s an example of a web page that takes all these steps:

<!DOCTYPE html>
<html lang="en" xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta charset="utf-8"/>
<title>A Tiny HTML Document</title>
<link href="styles.css" rel="stylesheet"/>
<script src="scripts.js"></script>
</head>

<body>

<p>Let's rock the browser, XHTML5 style.</p>
</body>
</html>

Now you can use an XHTML5 validator to get stricter error checking that enforces
the old-style XHTML rules. The standard W3C validator won’t do it, but the valida-
tor at http://validator.w3.org/nu will, provided you click the Options button and
choose XHTML5 from the Preset list. You also need to choose the “Be lax about
content-type” option, unless you’re using the direct input approach and pasting
your markup into a text box.

By following these steps, you can create and validate an XHTML document. However,
browsers will still process your page as an HTML5 document—one that just happens
to have an XML inferiority complex. They won’t attempt to apply any extra rules.

If you want to go XHTMLS5 all the way, you need to configure your web server to
serve your page with the MIME type application/xhtml+xml or application/xml,
instead of the standard text/html. (See page 152 for the lowdown on MIME types.)
But before you call your web hosting company, be warned that this change will
prevent your page from being displayed by any version of Internet Explorer before
IE 9. For that reason, true XHTMLS5 is an immediate deal-breaker in the browser.

Incidentally, browsers that do support XHTMLS deal with it differently from ordinary
HTML5. They attempt to process the page as an XML document, and if that process
fails (because you've left a mistake behind), the browser gives up on the rest of
the document.

Bottom line? For the vast majority of web developers, from ordinary people to serious
pros, XHTML5 isn’t worth the hassle. The only exceptions are developers who have a

20

HTMLS5: THE MISSING MANUAL, SECOND EDITION

specific XML-related goal in mind; for example, developers who want to manipulate
the content in their pages with XML-related standards like XQuery and XPath.

TIP If you’re curious, you can trick your browser into switching into XHTML mode. Just rename your file so
that it ends with .xhtml or .xht. Then open it from your hard drive. Most browsers (including Firefox, Chrome, and
IE 9 or later) will act as though you downloaded the page from a web server with an XML MIME type. If there’s
a minor error in the page, the browser window will show a partially processed page (IE), an XML error message
(Firefox), or a combination of the two (Chrome).

I HTMLS5’s Element Family

So far, this chapter has focused on the changes to HTML5’s syntax. But more im-
portant are the additions, subtractions, and changes to the elements that HTML
supports. In the following sections, you’ll get an overview of how they’ve changed.

Added Elements

In the following chapters, you’ll spend most of your time learning about new ele-
ments—ingredients that haven’t existed in web pages up until now. Table 1-1 has a
preview of what’s in store (and where you can read more about it).

TABLE 1-1 New HTML5 elements

CATEGORY

Semantic elements for
structuring a page

ELEMENTS

<article>, <aside>,
<figcaption», <figure>,
<footer>, <header>, <nav>,
<section>, <details>,
<summary>

DISCUSSED IN...
Chapter 2

Semantic elements for text

<mark>, <time>, <wbr>
(previously supported, but
now an official part of the
language)

Chapter 3

Web forms and interactivity

<input> (not new, but

has many new subtypes)
<datalist>, <keygen>,
<meter>, <progress>,
<command>, <menu>, <output>

Chapter 4

Audio, video, and plug-ins

<audio>, <video>, <source>,
<embed> (previously
supported, but now an
official part of the language)

Chapter 5

Canvas

<canvas>

Chapter 8

Non-English language
support

<bdo>, <rp>, <rt>, <ruby>

HTMLS5 specification at
http://dev.w3.org/html5/
markup

HTMLS5’S
ELEMENT
FAMILY

CHAPTER 1: INTRODUCING HTML5

21

HTMLS’S
ELEMENT
FAMILY

Removed Elements

Although HTML5 adds new elements, it also boots a few out of the official family.
These elements will keep working in browsers, but any decent HTMLS5 validator will
smoke them out of their hiding places and complain loudly.

Most obviously, HTML5 keeps the philosophy (first cooked up with XHTML) that
presentational elements are not welcome in the language. Presentational elements
are elements that are simply there to add formatting to web pages, and even the
greenest web designer knows that’s a job for style sheets. Rejects include elements
that professional developers haven’t use in years (like <big>, <center>, , <tt>,
and <strike>). HTMLs presentational attributes died the same death, so there’s no
reason to rehash them all here.

Additionally, HTML5 kicks more sand on the grave where web developers buried
the HTML frames feature. When it was first created, HTML frames seemed like a
great way to show multiple web pages in a single browser window. But now, frames
are better known as an accessibility nightmare because they cause problems with
search engines, assistive software, and mobile devices. Interestingly, the <iframe>
element—which lets developers put one page inside another—squeaks through.
That’s because web applications use the <iframe> for a range of integration tasks,
like incorporating YouTube windows, ads, and Google search boxes in a web page.

A few more elements were kicked out because they were redundant or the cause of
common mistakes, including <acronym> (use <abbr> instead) and <applet> (because
<object> is preferred). But the vast majority of the element family lives on in HTML5.

NOTE For those keeping count, HTMLS includes a family of just over 100 elements. Out of these, almost 30
are new and about 10 are significantly changed. You can browse the list of elements (and review which ones are
new or changed) at http://dev.w3.org/html5/markup.

Adapted Elements

HTMLS5 has another odd trick: Sometimes it adapts an old feature to a new purpose.
For example, consider the <small> element, which fell out of favor as a clumsy
way to shrink the font size of a block of text—a task more properly done with style
sheets. But unlike the discarded <big> element, HTML5 keeps the <small> element,
with a change. Now, the <small> element represents “small print”—for example, the
legalese that no one wants you to read at the bottom of a contract:

<small>The creators of this site will not be held liable for any injuries that
may result from unsupervised unicycle racing.</small>

Text inside the <small> element is still displayed as it always was, using a smaller
font size, unless you override that setting with a style sheet.

22

HTMLS5: THE MISSING MANUAL, SECOND EDITION

NOTE Opinions on this <small> technique differ. On the one hand, it’s great for backward compatibility,
because old browsers already support the <small> element, and so they’ll continue to support it in an HTMLS
page. On the other hand, it introduces a potentially confusing change of meaning for old pages. They may be
using the <small> element for presentational purposes, without wanting to suggest “small print.”

Another changed element is <hr> (short for horizontal rule), which draws a separating
line between sections. In HTML5, <hr> represents a thematic break—for example,
a transition to another topic. The default formatting stays, but now a new meaning
applies.

Similarly, <s> (for struck text), isn’t just about crossing out words anymore—it now
represents text that is no longer accurate or relevant, and has been “struck” from
the document. Both of these changes are subtler than the <small> element’s shift in
meaning, because they capture ways that the <hr> and <s> elements are commonly
used in traditional HTML.

I BOLD AND ITALIC FORMATTING

The most important adapted elements are the ones for bold and italic formatting.
Two of HTML’s most commonly used elements—that’s for bold and <i> for ital-
ics—were partially replaced when the first version of XHTML introduced the look-
alike and elements. The idea was to stop looking at things from a
formatting point of view (bold and italics), and instead substitute elements that had
a real logical meaning (strong importance or stressed emphasis). The idea made
a fair bit of sense, but the and <i> tags lived on as shorter and more familiar
alternatives to the XHTML fix.

HTML5 takes another crack at solving the problem. Rather than trying to force
developers away from and <i>, it assigns new meaning to both elements. The
idea is to allow all four elements to coexist in a respectable HTML5 document. The
result is the somewhat confusing set of guidelines listed here:

+ Use for text that has strong importance. This is text that needs to
stand out from its surroundings.

* Use for text that should be presented in bold but doesn’t have greater
importance than the rest of your text. This could include keywords, product
names, and anything else that would be bold in print.

* Use for text that has emphatic stress—in other words, text that would
have a different inflection if read out loud.

* Use <i> for text that should be presented in italics but doesn’t have extra em-
phasis. This could include foreign words, technical terms, and anything else that
you’d set in italics in print.

HTMLS5’S
ELEMENT
FAMILY

CHAPTER 1: INTRODUCING HTML5

23

HTMLS’S
ELEMENT
FAMILY

And here’s a snippet of markup that uses all four of these elements in the appropri-
ate way:

Breaking news! There's a sale on <i>leche quemada</i> candy
at the El Azul restaurant. Don't delay, because when the last candy
is gone, it's gone.

In the browser, the text looks like this:

Breaking news! There’s a sale on leche quemada candy at the El Azul restaurant. Don’t delay,
because when the last candy is gone, it’s gone.

Some web developers will follow HTML's well-intentioned rules, while others just
stick with the most familiar elements for bold and italic formatting.

Tweaked Elements

HTML5 also shifts the rules of a few elements. Usually, these changes are minor
details that only HTML wonks will notice, but occasionally they have deeper effects.
One example is the rarely used <address> element, which is not suitable (despite the
name) for postal addresses. Instead, the <address> element has the narrow purpose
of providing contact information for the creator of the HTML document, usually as
an email address or website link:

Our website is managed by:

<address>

John Solo,

Lisa Cheng, and
Ryan Pavane.
</address>

The <cite> element has also changed. It can still be used to cite some work (for
example, a story, article, or television show), like this:

<p>Charles Dickens wrote <cite>A Tale of Two Cities</cite>.</p>

However, it’s not acceptable to use <cite> to mark up a person’s name. This restric-
tion has turned out to be surprisingly controversial, because this usage was allowed
before. Several guru-level web developers are on record urging people to disregard
the new <cite> rule, which is a bit odd, because you can spend a lifetime editing
web pages without ever stumbling across the <cite> element in real life.

A more significant tweak affects the <a> element for creating links. Past versions of
HTML have allowed the <a> element to hold clickable text or a clickable image. In
HTML5, the <a> element allows anything and everything, which means it’s perfectly
acceptable to stuff entire paragraphs in there, along with lists, images, and so on.
(If you do, you'll see that all the text inside becomes blue and underlined, and all
the images inside sport blue borders.) Web browsers have supported this behavior
for years, but it’s only HTML5 that makes it an official, albeit not terribly useful, part
of the HTML standard.

24

HTMLS5: THE MISSING MANUAL, SECOND EDITION

There are also some tweaks that don’t work yet—in any browser. For example, the
<0l> element (for ordered lists) now gets a reversed attribute, which you can set
to count backward (either toward 1, or toward whatever starting value you set with
the start attribute), but currently there are only two browsers that recognize this
setting—Chrome and Safari.

You'll learn about a few more tweaks as you make your way through this book.

Standardized Elements

HTMLS5 also adds supports for a few elements that were supported but weren’t of-
ficially welcome in the HTML or XHTML language. One of the best-known examples
is <embed>, which is used all over the Web as an all-purpose way to shoehorn a
plug-in into a page.

A more exotic example is <wbr>, which indicates an optional word break—in other
words, a place where the browser can split a line if the word is too long to fit in its
container:

<p>Many linguists remain unconvinced that
supercali<wbr>fragilistic<wbr>expialidocious is indeed a word.</p>

The <wbr> element is useful when you have long names (sometimes seen in program-
ming terminology) in small places, like table cells or tiny boxes. Even if the browser
supports <wbr>, it will break the word only if it doesn’t fit in the available space. In
the previous example, that means the browser may render the word in one of the
following ways:

Many linguists remain

unconvinced that
supercalifragilisticexpialidocious
is indeed a word.

Many linguists remain
unconvinced that
supercalifragilistic
expialidocious is indeed a
word.

Many linguists
remain
unconvinced
that supercali
fragilistic
expialidocious
isindeed a
word.

HTMLS5’S
ELEMENT
FAMILY

CHAPTER 1: INTRODUCING HTML5

25

USING HTMLS5
TODAY

The <wbr> element has a natural similarity to the <nobr> element, which prevents
text from wrapping no matter how narrow the available space. However, HTML5
considers <nobr> obsolete and advises all self-respecting web developers to avoid
using it. Instead, you can get the same effect by adding the white-space property
to your style sheet and setting it to nowrap.

M Using HTML5 Today

Before you commit to HTML5, you need to know how well it works with the browsers
your visitors are likely to use. After all, the last thing any web developer wants is a
shiny new page that collapses into a muddle of scrambled markup and script errors
when it meets a vintage browser.

Ina moment, you’ll learn how to research specific HTML5 features to find out which
browsers support them, and examine browser usage statistics to find out what por-
tion of your audience meets the bar. But before digging into the fine details, here’s
a broad overview of the current state of HTMLS5 support:

 |f your visitors use the popular Google Chrome or Mozilla Firefox, they’ll be fine.
Not only have both browsers supported the bulk of HTML5 for several years, but
they’re also designed to update themselves automatically. That means you’re
unlikely to find an old version of Chrome or Firefox in the wild.

 |f your visitors use Safari or Opera, you’re probably still on safe ground. Once
again, these browsers have had good HTML5 support for several years, and old
versions are rarely seen.

* |If your visitors use tablet computers or smartphones, you may face some
limitations with certain features, as you’ll learn throughout this book. However,
the mobile browsers on all of today’s web-enabled gadgets were created with
HTML5 in mind. That means your pages are in for maybe a few hiccups, not a
horror show.

 |f your visitors use an older version of Internet Explorer—that is, any version
before IE 10—most HTML5 features won't work. Here’s where the headaches
come in. Old versions of Windows are still common, and they typically include
old versions of Internet Explorer. Even worse, many old versions of Windows
don’t let their users upgrade to a modern, HTML5-capable version of IE. Win-
dows Vista, for example, is limited to IE 9. The mind-bogglingly old (but still
popular) Windows XP is stuck with |E 8.

No, it’s not Microsoft’s diabolical plan to break the Web—it’s just that newer
versions of |E were designed with newer computer hardware in mind. This new
software simply won’t work on old machines. But people with old versions of
Windows can use an alternative browser like Firefox, although they may not
know how to install it or may not be allowed to make such changes to a com-
pany computer.

26

HTMLS5: THE MISSING MANUAL, SECOND EDITION

USING HTMLS
TODAY

Although really old versions of Internet Explorer—like IE 6 and IE 7—have finally disappeared from the
scene, the problematic IE 8 and IE 9 still account for over 10 percent of all Web traffic (at the time of this writing).
And because it’s never OK to force one in ten website visitors to suffer, you’ll need to think about workarounds
for most HTML5 features—at least for the immediate future.

UP TO SPEED

Dealing with Old Browsers

code that checks whether the current browser supports
a feature you want to use (using a tool like Modernizr). If

For the next few years, some of your visitors’ browsers won’t
support all the HTMLS features you want to use. That’s a fact
of life. But it doesn’t need to prevent you from using these the browser fails the test, your code can show different
features, if you’re willing to put in a bit more work. There are content or use a less glamorous approach.

two basic strategies you can use: « Use a JavaScript workaround. Many of HTML5’s new
+ Degrade gracefully. Sometimes, when a feature doesn’t features are inspired by the stuff web developers are

work, it’s not a showstopper. For example, HTML5’s new
<video> element has a fallback mechanism that lets
you supply something else to older browsers, like a video
player that uses the Flash plug-in. (Supplying an error
message is somewhat rude, and definitely not an example
of degrading gracefully.) Your page can also degrade
gracefully by ignoring nonessential frills, like some of
the web form features (like placeholder text) and some of
the formatting properties from (SS3 (like rounded corners

already doing the hard way. Thus, it should come as no
surprise that you can duplicate many of HTMLS’s features
using a good JavaScript library (or, in the worst-case
scenario, by writing a whackload of your own custom
JavaScript). Creating JavaScript workarounds can be a
lot of work, but there are hundreds of good (and not-
s0-good) workarounds available free on the Web, which
you can drop into your pages when needed. The more
elaborate ones are called polyfills (page 35).

and drop shadows). Or, you can write your own JavaScript

How to Find the Browser Requirements for Any HTML5
Feature

The people who have the final word on how much HTMLS5 you use are the browser
vendors. If they don’t support a feature, there’s not much point in attempting to use
it, no matter what the standard says. Today, there are four or five major browsers (not
including the mobile variants that run on web-connected devices like smartphones
and tablets). A single web developer has no chance of testing each prospective
feature on every browser—not to mention evaluating support in older versions that
are still widely used.

Fortunately, there’s an ingenious website named “Can | use” that can help you out.
It details the HTML5 support found in every mainstream browser. Best of all, it lets
you focus on exactly the features you need. Here’s how it works:

1. Point your browser to http://caniuse.com.

The main page has a bunch of links grouped into categories, like CSS, HTML5,
and so on.

CHAPTER 1: INTRODUCING HTML5 27

USING HTML5 2. Choose the feature you want to study.
TODAY

The quickest way to find a feature is to type its name into the Search box near
the top of the page.

Or, you can browse to the feature by clicking one of the links on the front page.
The HTML5 group has a set of links that are considered part of the core HTML5
standard; the JS API group has links for JavaScript-powered features that began
as part of HTML5 but have since been split off; the CSS group has links for the
styling features that are part of CSS3; and so on.

TIP If you want, you can view the support tables for every feature in a group, all at once. Click the group
title (like HTML5 or JS API), which is itself a link.

3. Examine your results (Figure 1-4).

Each feature table shows a grid of different browser versions. The tables indicate
support with the color of the cell, which can be red (no support), bright green
(full support), olive green (partial support), or gray (undetermined, usually
because this version of the browser is still under development and the feature
hasn’t been added yet).

4. Optionally, choose different browsers to put under the microscope.

Ordinarily, the support table includes the most recent versions of the most
popular browsers. However, you can tweak the table so it includes support
information for other browsers that may be important to you—say, the aging
|E 7 or a specialized mobile browser like Firefox for Android.

To choose which browsers appear in the tables, start by clicking the “Show op-
tions” link above the table. A list of browsers appears, and you can choose the
browsers you want by adding a checkmark next to their names. You can also
tweak the “Versions shown” slider, which acts as a kind of popularity thresh-
old—lower it to include older browser versions that are used less frequently.

Alternatively, click the “Show all versions” link in the top-left corner of the
table to see all the browser compatibility information that “Can | use” has in its
database. But be warned that you’ll get an immense table that stretches back
to the dark days of Firefox 2 and |IE 5.5.

28 HTMLS5: THE MISSING MANUAL, SECOND EDITION

USING HTML5
TODAY

A quick estimate of FIGURE 1-4
how many people have
The version of IE has browsers that support This search for audio finds two
no audio support this feature tables. First is the table that
o describes I.Jrowser support for
{audio x) the <audio> element (shown
here).

m E M“ M Green-shaded squares indicate

browser versions that have

full audio support, while
ol ST LS e Eod NI = Fatcti sxepuod) I red-shaded squares indicate
browser versions that do not.

3 results found

Opera Android

F x Cl Sa O a
Firefox Chrome Safan Opera Mini Browser

40
4.1

7.0
4.2 10.0

These versions of IE have Some handy links
full audio support with information
about this feature

CHAPTER 1: INTRODUCING HTMLS5 29

US';‘SDTYM'-S How to Find Out Which Browsers Are on the Web

How do you know which browser versions you need to worry about? Browser adop-
tion statistics can tell you what portion of your audience has a browser that supports
the features you plan to use. One good place to get an overall snapshot of all the
browsers on the Web is GlobalStats, a popular tracking site. Here’s how to use it:

1. Browse to hitp://gs.statcounter.com.

On the GlobalStats site, you’ll see a line graph showing the most popular
browsers during the previous year. However, this chart doesn’t include version
information, so it doesn’t tell you how many people are surfing with problematic
versions of Internet Explorer (versions before IE 10). To get this information, you
need to adjust another setting.

2. Look for the Stat setting (under the chart) and choose “Browser Version
(Partially Combined).”

This choice lets you consider not just which browsers are being used, but which
versions of each browser. The partial combining tells GlobalStats to group to-
gether browsers that are rapidly updated, like Chrome and Firefox (Figure 1-5),
so your chart isn’t cluttered with dozens of extra lines.

3. Optionally, change the geographic region in the Region box.

The standard setting is Worldwide, which shows browser statistics culled from
across the globe. However, you can home in on a specific country (like Bolivia)
or continent (like North America).

StatCounter Global Stats FIGURE 1-5
Top 12 i (ially C: ined) from June 2012 to June 2013
o This chart shows that al-
though Chrome’s popular-
20% | ! i ity is soaring, troublesome
browser versions like IE 8
and IE 9 still cling to life.

30% |

<
s
Red
-
s
o

® 3+ Line
O Bar

O@ map

Stat: Browser Version (Partial... ¥ Region: Worldwide ¥ | Period: [lune 2012 to June 2(13 (edit)

The death of IE 7 But IE 8 and
is fast approaching IE 9 live on

30 HTMLS5: THE MISSING MANUAL, SECOND EDITION

4. Optionally, click the text next to the Period setting to pick a different date USING HTML5
range. TODAY

You’ll usually see the browser usage trends for an entire year, but you can choose
to focus on a smaller range, like the past three months.

5. Optionally, change the chart type using the option buttons that are just to
the right of the chart box.

Choose the Line option to see a line chart that shows the trend in browser
adoption over time. Choose Bar to see a bar chart that shows a snapshot of
the current situation. Or, choose Map to see a color-coded map that shows the
countries where different browsers reign supreme.

GlobalStats compiles its statistics daily using tracking code that’s present on millions
of websites. And while that’s a large number of pages and a huge amount of data,
it’s still just a small fraction of the total Web, which means you can’t necessarily
assume that your website visitors will use the same browsers.

Furthermore, browser-share results change depending on the web surfer’s country
and the type of website. For example, in Germany, Firefox is the top browser with
over 40 percent of web surfers. And on the TechCrunch website (a popular news site
for computer nerds), old versions of Internet Explorer are a rarity. So if you want to
design a website that works for your peeps, it’s worth reviewing the web statistics
generated by your own pages. (And if you aren’t already using a web tracking service
for your site, check out the top-tier and completely free Google Analytics at www.
google.com/analytics.)

Feature Detection with Modernizr

Feature detection is one strategy for dealing with features that aren’t supported by
all the browsers that hit up your site. The typical pattern is this: Your page loads and
runs a snippet of JavaScript code to check whether a specific feature is available.
You can then warn the user (the weakest option), fall back to a slightly less impres-
sive version of your page (better), or implement a workaround that replicates the
HTML5 feature you wanted to use (best).

Unfortunately, because HTML5 is, at its heart, a loose collection of related standards,
there’s no single HTML5 support test. Instead, you need dozens of different tests to
check for dozens of different features—and sometimes even to check if a specific
part of a feature is supported, which gets ugly fast.

Checking for support usually involves looking for a property on a programming ob-
ject, or creating an object and trying to use it a certain way. But think twice before
you write this sort of feature-testing code, because it’s so easy to do it badly. For
example, your feature-testing code might fail on certain browsers for some obscure
reason or another, or quickly become out of date. Instead, consider using Modernizr
(http://modernizr.com), a small, constantly updated tool that tests the support of a
wide range of HTML5 and related features. It also has a cool trick for implementing
fallback support when you’re using new CSS3 features, which you’ll see on page 180.

CHAPTER 1: INTRODUCING HTML5 31

USING HTML5 Here’s how to use Modernizr in one of your web pages:
TODAY

1. Visit the Modernizr download page at http://modernizr.com/download.

Look for the “Development version” link, which points to the latest all-in-one
JavaScript file for Modernizr.

2. Right click the “Development version” link and choose “Save link as” or
“Save target as.”

Both commands are the same thing—the wording just depends on the browser
you’re using.
3. Choose a place on your computer to save the file, and click Save.

The JavaScript file has the name modernizr-latest.js, unless you pick something
different.

4. When you’re ready to use Modernizr, place that file in the same folder as
your web page.

Or, place it in a subfolder and modify the path in the JavaScript reference
accordingly.

5. Add areference to the JavaScript file in your web page’s <head> section.

Here’s an example of what your markup might look like, assuming the modernizr-
latest.js file is in the same folder as your web page:

<head>
<meta charset="utf-8">
<title>HTMLS Feature Detection</title>
<script src="modernizr-latest.js"></script>

</head>
Now, when your page loads, the Modernizr script runs. It tests for a couple of
dozen new features in mere milliseconds, and then creates a JavaScript object

called modernizr that contains the results. You can test the properties of this
object to check the browser’s support for a specific feature.

TIP For the full list of features that Modernizr tests, and for the JavaScript code that you need to examine
each one, refer to the documentation at http.//modernizr.com/docs.

6. Write some script code that tests for the feature you want and then carries
out the appropriate action.

For example, here’s how you might test whether Modernizr supports the HTML5
drag-and-drop feature, and show the result in the page:

32 HTMLS5: THE MISSING MANUAL, SECOND EDITION

<IDOCTYPE html> USING HTMLS
<html lang="en"> TODAY

<head>
<meta charset="utf-8">
<title>HTMLS Feature Detection</title>
<script src="modernizr-latest.js"></script>
</head>

<body>
<p>The verdict is... </p>

<script>
// Find the element on the page (named result) where you can show
// the results.
var result = document.getElementById("result");
if (Modernizr.draganddrop) {
result.innerHTML = "Rejoice! Your browser supports drag-and-drop.";
}
else {
result.innerHTML = "Your feeble browser doesn't support drag-and-drop.";
}
</script>
</body>

</html>

Figure 1-6 shows the result.

[==/ FiGURE 1-6
(E@mmmmmm P-ax| i 7y & Although this example shows the right way to test for features,
@& HTMLS Feature Detection]_I it shows a less-than-ideal approach for dealing with them.
Instead of telling your website visitor about a missing feature,
The verdict is... Rejoice! Your browser supports drag-and- it’s far, far better to implement some sort of workaround (even
drop. if it’s not as neat or fully featured as the HTML5 equivalent) or

to simply ignore the problem altogether (if the missing feature
is a minor frill that’s not necessary for the visitor to enjoy the
page).

TIP This example uses basic and time-honored JavaScript techniques—looking up an element by ID and
changing its content. If you find it a bit perplexing, you can brush up with the JavaScript review in Appendix B,
“JavaScript: The Brains of Your Page.”

CHAPTER 1: INTRODUCING HTMLS5 33

USING HTML5 The full Modernizr script is a bit bulky. It’s intended for testing purposes while
TODAY you’re still working on your website. Once you’ve finished development and you’re
ready to go live, you can create a slimmed-down version of the Modernizr script
that tests only for the features you need. To do so, go to the download page at
http://modernizr.com/download. But this time, instead of using the “Development
version” link, peruse the checkboxes below. Click the ones that correspond to the
features you need to detect. Finally, click the Generate button to create your own
custom Modernizr version, and then click the Download button to save it on your

computer (Figure 1-7).

- °IE¥ [GuRE 17

/' all Modernizr Download Buil x

€« C' | [} modernizr.com/download/#-canvas-canvastext-history-audio-shiv-cssclasses-load v = You're abOUt' to download
= a custom build of Modern-
Use the 1o develop with and learn from. Then, when you're ready for izr that can detect support

production, use the build tool below to pick only the tests you need.

for the HTML5 canvas, the

HTMLS Misc. canvas text feature, and
HTML5 video. This build of

eppicstonCache B ean At Modernizr won’t be able to

|

Canvas Text B SMIL check for other features.
Drag 'n Drop W SVG

hashchange SVG clip paths

W background-size
M border-image

W box-shadow

M Flexible Box Model

(flexbox)

M Flexbox Legacy

M hsla) IndexedDB

M multiple backgrounds Input Attributes EXt ra

M opacity Note- does nor odd dasses

M rgbaf Input Types

M text-shadow Note: does not odd dasses

W <SS Animations

M CSS Columns

W CSS Generated Content
{before/:after)

W CSS Gradients

Touch Events
WebGL

History (pushState)
HTML5 Audio
HTML5 Video

EECGEEERECO N

htmiSshiv v3.6

printshiv
Modernizr.load
()

MW Media Queri
Add CS5 Cl

Web Sockets
Web SQL Databa
Web Workers className prefi

» Extensibility P Non-core detects

% GENERATE!

Q DOWNLOAD h

34 HTMLS5: THE MISSING MANUAL, SECOND EDITION

Feature “Filling” with Polyfills

Modernizr helps you spot the holes in browser support. It alerts you when a feature
won’t work. However, it doesn’t do anything to patch these problems. That’s where
polyfills come in. Basically, polyfills are a hodgepodge collection of techniques for
filling the gaps in HTML5 support on aging browsers. The word polyfillsis borrowed
from the product polyfiller, a compound that’s used to fill in drywall holes before
painting (also known as spackling paste). In HTML5, the ideal polyfill is one you can
drop into a page without any extra work. It takes care of backward compatibility
in a seamless, unobtrusive way, so you can work with pure HTML5 while someone
else worries about the workarounds.

But polyfills aren’t perfect. Some rely on other technologies that may be only partly
supported. For example, one polyfill allows you to emulate the HTML5 canvas on
old versions of Internet Explorer using the Silverlight plug-in. But if the web visitor
isn’t willing or able to install Silverlight, then you need to fall back on something
else. Other polyfills may have fewer features than the real HTML5 feature, or poorer
performance.

Occasionally, this book will point you to a potential polyfill. If you want more in-
formation, you can find the closest thing there is to a comprehensive catalog of
HTMLS5 polyfills on GitHub at http://tinyurl.com/polyfill. But be warned—polyfills
differ greatly in quality, performance, and support.

TIP Remember, it’s not enough to simply know that a polyfill exists for a given HTML5 feature. You must test

it and check how well it works on various old browsers before you risk incorporating the corresponding feature
into your website.

With tools like browser statistics, feature detection, and polyfills, you’re ready to
think in depth about integrating HTMLS5 features into your own web pages. In the
next chapter, you’ll take the first step, with some HTML5 elements that can function
in browsers both new and old.

USING HTMLS
TODAY

CHAPTER 1: INTRODUCING HTML5

35

O’Reilly Ebooks—Your bookshelf on your devices!

=

Python

PDF ePub Mobi APK DAISY

When you buy an ebook through oreilly.com you get lifetime access to the book, and
whenever possible we provide it to you in five, DRM-free file formats—PDF, .epub,
Kindle-compatible .mobi, Android .apk, and DAISY —that you can use on the devices of
your choice. Our ebook files are fully searchable, and you can cut-and-paste and print
them. We also alert you when we’ve updated the files with corrections and additions.

Learn more at ebooks.oreilly.com

You can also purchase O’Reilly ebooks through the
iBookstore, the Android Marketplace, and Amazon.com.

Spreading the knowledge of innovators

http://oreilly.com/store/index.html
http://oreilly.com/ebooks/
http://www.android.com/market/
http://amazon.com
http://www.oreilly.com

	Contents
	The Missing Credits
	Introduction
		Part One:	Modern Markup
		Chapter 1:	Introducing HTML5
	The Story of HTML5
	Three Key Principles of HTML5
	Your First Look at HTML5 Markup
	A Closer Look at HTML5 Syntax
	HTML5’s Element Family
	Using HTML5 Today

		Chapter 2:	Structuring Pages with Semantic Elements
	Introducing the Semantic Elements
	Retrofitting a Traditional HTML Page
	Browser Compatibility for the Semantic Elements
	Designing a Site with the Semantic Elements
	The HTML5 Outlining System

		Chapter 3:	Writing More Meaningful Markup
	The Semantic Elements Revisited
	Other Standards That Boost Semantics
	A Practical Example: Retrofitting an “About Me” Page
	How Search Engines Use Metadata

		Chapter 4:	Building Better Web Forms
	Understanding Forms
	Revamping a Traditional HTML Form
	Validation: Stopping Errors
	Browser Support for Web Forms and Validation
	New Types of Input
	New Elements
	An HTML Editor in a Web Page

		Part Two:	Video, Graphics,
and Glitz
		Chapter 5:	Audio and Video
	The Evolution of Web Video
	Introducing HTML5 Audio and Video
	Understanding the HTML5 Media Formats
	Fallbacks: How to Please Every Browser
	Controlling Your Player with JavaScript
	Video Captions

		Chapter 6:	Fancy Fonts and Effects with CSS3
	Using CSS3 Today
	Building Better Boxes
	Creating Effects with Transitions
	Web Fonts

		Chapter 7:	Responsive Web Design with CSS3
	Responsive Design: The Basics
	Adapting Your Layout with Media Queries

		Chapter 8:	Basic Drawing with the Canvas
	Getting Started with the Canvas
	Building a Basic Paint Program
	Browser Compatibility for the Canvas

		Chapter 9:	Advanced Canvas: Interactivity and Animation
	Other Things You Can Draw on the Canvas
	Shadows and Fancy Fills
	Making Your Shapes Interactive
	Animating the Canvas
	A Practical Example: The Maze Game

		Part Three:	Building Web Apps
		Chapter 10:	Storing Your Data
	Web Storage Basics
	Deeper into Web Storage
	Reading Files
	IndexedDB: A Database Engine in a Browser

		Chapter 11:	Running Offline
	Caching Files with a Manifest
	Practical Caching Techniques

		Chapter 12:	Communicating with the Web Server
	Sending Messages to the Web Server
	Server-Sent Events
	Web Sockets

		Chapter 13:	Geolocation, Web Workers, and History Management
	Geolocation
	Web Workers
	History Management

		Part Four:	Appendixes
		Appendix A:	Essential CSS
	Adding Styles to a Web Page
	The Anatomy of a Style Sheet
	Slightly More Advanced Style Sheets
	A Style Sheet Tour

		Appendix B:	JavaScript: The Brains of Your Page
	How a Web Page Uses JavaScript
	A Few Language Essentials
	Interacting with the Page

	Index

